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Transition to a wavy vortex regime in convective 
flow between inclined plates 

By J. E. HART? 
Department of Meteorology, M.I.T., Cambridge, Mass. 

(Received 3 September 1970) 

Experimental results concerning the supercribical behaviour of instabilities 
occurring in the bhermal convecbive flow between inclined plates are presented. 
For inclination 6 between 90" and 10" (6 = 0" is the vertical orientation), with the 
bottom plate hotter, it is known that the primary instabilities are longitudinal 
convective rolls with axes oriented up the slope. These rolls are found 60 become 
wavy at a supercritical Rayleigh number Ra(6, Pr),  with an upslope wavelength 
which seems to be related directly to the wavelength of the originalrolls. Measure- 
ments indicate thab these transitions take place at  Reynolds numbers which are 
probably too small for the process to be attributed to a shear instability. It is 
thought that the cross-slope derivative of the buoyancy force, which exists 
because of the tilted geometry, is important in generating the required vorticity. 
The transition is crucial to the development of violent unsteadiness. The breaking 
of the waves leads to turbulence at much lower Rayleigh numbers than those 
required in convection between horizontal plates. The transition to wavy vortices 
appears to be very similar to that which occurs for Taylor vortices in cylindrical 
Couette flow. 

1. Introduction 
In  another paper (Hart 1971, hereafter I) an experiment is described in which 

thermal convection is caused to occur in a differentially heated, inclined box. The 
geometry and notation for this problem are shown in figure 1. The flows for 
D / L  < 1 are governed by the following parameters: the Rayleigh number, 
Ra = ( g y A T D 3 ) / ~ v ;  the Prandtl number, Pr = V / K ;  the aspect raiio, h = D / H ;  
and the tilb angle 6; which have been defined in the usual manner. In  this work 
Pr = 6.7 (water) and h = 0.027. As was discussed in I, this particular problem 
possesses a rather large selection of primary instabilities which develop on the 
meanupslope-downslope unicellular circulation. If 6 is made slightly less than go", 
the first instabilities to appear as the Rayleigh number is raised are longitudinal 
convective rolls with axes oriented upslope (x). This same kind of secondary 
motion is always the first to appear provided 6 2 10". The region 10" 5 6 < 90" is 
convectively unstable, that is to say the correlations between the cross-stream 
velocity w and the temperature perturbation T are large and positive. 
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By observing the motions in plan view it was easy to see that the development 
of turbulence for 20" < 6 < 90" was rather Werent from what it was in the 
horizontal, parallel-plate convection limit. In  the latter case the initial roll 
instabilities aligned with the side-walls. As Ra was increased slowly they became 
more irregular in orientation and developed a striation structure (three-dimen- 
sional) near Ra = 20 000. Unsteadiness became evident as Ra approached 
50 000. These observations are consistent with the more detailed measurements 
of Krishnamurti (1970). In  the inclined case the transition to turbulence was 
rather different. The initial longitudinal rolls became wavy at a specific super- 
critical Ra. As Ra was increased further the waviness assumed larger amplitudes 
which ultimately led to wave-breaking and turbulence. For S = 45" unsteadiness 
sets in a t  a Rayleigh number less than 0.2 times that required for similar develop- 
ment at 6 = 90°. Figure 2 (plate 1) shows a visualization of the wavy vortices 
obtained by looking down through a glass lid at a suspension of fish flakes in 
water. 

FIQTJRE 1. Geometry and co-ordinates for the tilted convection experiment. 

The onset of wavy vortices has often been observed to precede turbulence in a 
number of other systems. The most striking example is that occurring in cylindri- 
cal Couette flow (Coles 1965). Longitudinal vortices also appear on the single, 
inclined, heated plate (Sparrow & Husar 1969). Development in this case takes 
place up the plate (the Rayleigh number is a function of the upslope co-ordinabe). 
In  their photographs one can see that the first change in the vortices is that they 
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become wavy. In  this example too, the waves break and turbulence follows. 
Willis & Deardorff (1970) discuss vertically coherenb wavy motions observed in 
horizontal plate convection. In the light of these other stjudies it is the purpose of 
this paper to present the transition data for our experiment in the hope that 
these kinds of motions may be better understood. 

2. Experimental observations 
In I a technique was described whereby the primary instabilities were detected 

by looking for waves induced along a dye line at x = x = 0. The dye line was 
injected using the standard bhymol blue method of Baker (1966). In  order to 
detect the onset of waviness a similar method was used except now the dye lines 
were induced along y = x = 0; that is, parallel to the axes of the primary longi- 
tudinal instiabilities. Thus as long as the vortices remain straight, dye will be 
advected uniformly along the length of the wire. As soon as waviness sets in, 
non-uniform advection of the dye will cause i6 to become wavy also. Both the 
transition points and the wavelengths can be measured in this manner. This 
method was automated by changing one of the plate temperatures slowly 
( < 0.1 'C/20 min) using a clock drive on one of the temperature controllers. For 
fixed S the fluid was caused to pass through longitudinal roll onset and on to the 
wavy r6gime. Pictures of the dye wire were taken every minute, and a set of 
lights which contjained a binary-code representation of the temperature dif- 
ference were photographed split-image along wibh events in the tank. Thus by 
looking through the film record the wavy transition could easily be identified 
with a particular Rayleigh number. In  identifying the onset of waviness it was 
required that the secondary motion caused by it persist, as iti was sometimes 
observed that the longitudinal vorbices shifted slightly in a transienb manner as 
they adjusted themselves into perfect; alignment over the whole length of the 
tank. For each angle several runs were made and the error bars in the critical 
Rayleigh number data are based on the scatter, with the points representing the 
average. 

Figure 3 (plate 2) shows a typical sequence of photographs. One can easily see 
the onset (b) ,  finite amplitude effects (c), and subsequent breaking and unsteadi- 
ness (d )  due to the meandering. Figure 4 contains the transition data from all of 
the runs with 6 > 0. The solid line denotes the experimentally determined 
primary transition from the mean unicell to the longitudinal roll r6gime. The wavy 
vortex transition has a minimum near 6 = 45" and the cut-offs near 6 = 90' and 
6 = 10". The observed wave-numbers are shown in figure 5. The solid line is for 
the wave-numbers of the longitudinal rolls, multiplied by 0.57. It is seen that the 
meander wave-numbers k ,  are nearly constant multiples of the longitudinal roll 
wave-numbers, kr, e.g. 

It was observed that the longitudinal rolls which occur for S < 0" (see I) also 
develop a wavy structure. The transition points for this were not measured but 
overhead streak photographs indicat;e that even for these rolls where kr is 
significantly differen6 from 3.1, relation (1) holds, approximately. The dye-line 

k ,  = 0*57kr. (1) 
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pictures further suggesti thab bhe initial wavy pattern is stationary, ab least in so 
far as the sinusoidal dye patterns did not tend to move along the x axis within 
observation times of a few minubes. 
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FIGURE 4. Critical Rayleigh numbers (points) for the transition to wavy vortices. The solid 
line is the experimental critical curve for transition to parallel longitudinal rolls. The 
dotted curve represents equation (8). In  all cases Pr = 6.7,  h = 0.027. 

k 

Fiaum 5. Critical wave-numbers for the meanders. The solid line gives the wave-numbers 
( x 0.57) for the longitudinal rolls. The dotted curve represents equation (9). 
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3. Discussion 
The form of the meander transition curve, namely the pronounced minimum 

near 6 = 45", suggests a non-linear interaction involving both local components 
of buoyancy force, gp sin 62 and gp cos 69. To answer the question of the meander 
generation one would need Do proceed formally and tackle the three-dimensional 
non-linear problem. Using a generalization of the method of StuarD (1 960) and 
Watson (1960), Davey, DiPrima & Stuart (1968) were able to deduce some 
properties of the instability of Taylor vortices. I n  the present problem, however, 
it would be difficult; to carry out a similar analysis since the transition Rayleigh 
numbers are at least twice the critical Rayleigh number for the rolls, and the usual 
third-order expansions may not be sufficient. Rather than get involved in 
complicated mathematics, which would be quite beyond the scope of this paper, 
we look at two ways in which the combined unicell-roll flow might become 
unstable. To try and geD a rough idea of what is going on we estimate the order of 
magnitudes involved in the generation of steady z vorticity, periodic in x, and 
independent of z. 

The mean fields which are thought to be important are the y-dependent 
temperature and velocity fields associated with the equilibrium rolls. We have 
used the energy method of Stuart (1 958) to calculate an equilibrium amplitude 
for the mean fields. For our purposes this should be reasonably accurate, at least 
near 6 = 45", where the Rayleigh numbers are not too large. The temperature field 
is - 

T = - z + T , ,  

where T, = 12(Rasin6- 1708)~cosnzcoskPy/Rasin6. (2) 

i7 = 8 cos 6 [ Z S -  *z] + ur, 
where u, = 0*6cotb(Rasin6- 1708)~cosnzcosk~y[Ra. (3) 

The velocity field is driven by the above temperature field (e.g. V2u + cos 6. T = 0) 
and is 

This is valid for 6 5 60°, where upslope buoyancy is much greater than advection. 
We now look for ways perturbation meander vorticity w, = V&y* with 

u, = - $, v, = r,*, might be generated in a manner consistent with the observa- 
tions. One possibility is through shear forces creaking stationary disturbances on 
the velocity field (3). These are governed by the Orr-Sommerfeld equation, which 
for the z averaged u?, and period fluctuations q* N T(y)eikmZ, is 

($--k&))28-ikmRe = 0. 

The lateral Reynolds number for water is 

gyATD2 D 
Re = [urlmax = 0.08cot6(Rasin6- 1708)i. 

V 

(4) 

Since the stability equation (4) has periodic coefficients one looks for solutions 
of the form 

7 = epU$(y), q5 periodio in 2n/kr, 
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with p,, = 0. We have not tried numerical solutions of this complicated problem 
but one can obtain a rough estimate of the behaviour by looking at  the magnitudes 
of the source and dissipation terms. We substitute the observed values of 
lc, = 1.7, k,, = 3, and estimate derivatives using 7 ' ~  l c , , ~ .  Then 

The values of Re for which the meanders are observed are typically O( 1) .  Shear 
forces may be too weak to initiate instability. 

There is, alternatively, the generation of x vorticity by the curl of the buoyancy 
force, proportional to  T,. This exists here only because of the tilted geometry. It 
is possible that the buoyancy coupling may provide a means by which the 
available potential energy stored in the y dependent parb of the mean tempera- 
ture field may be released. One can imagine a situation wherevorticity isgenerated 
by the buoyancy forces and in which the velocity field associated with this 
vorticity regenerates the required temperature excess by advection of the mean 
temperature field V,T,~. In  fact a scale analysis on this process alone, e.g. on 

(6)  Vkv" - cos ST; = 0, 

and (7 )  

yields, using ( 2 ) ,  a critical curve 

Ra = 580 sin 6/cos2 S+ 1708/sin S (8) 

at a meander wave-number IC, = k , 1 ~ 5 ,  (9) 

which minimizes Ra(lc,). These numbers are in fair agreement with the data, but 
should only be regarded as suggestive, as it is not a t  all clear that the terms left 
out of (6) and (7) are negligible everywhere, or that such a crude scale analysis 
(in which essentially we have again set 7" N e ikrYeikmx)  gives a reasonable 
approximation to the actual solution of the full problem. However, it does 
suggest a possible energy transformation mechanism. 

Unlike the wavy vortices observed by Willis & Deardorff, the meandering 
motions here are not vertically coherent, there is a sbrong cross-stream (2) phase 
shift. Though the above models are deficient in many respects, perhaps the most 
importan6 assumption to relax is that of two-dimensional disturbances. An 
analysis resembling the present one for the shear instability mechanism has been 
suggested by Davey et al. (1968) in an effort to give a physical explanation for bhe 
azimuthal wave-number 1 Taylor vortex instabilities. There, also, the primary 
deficiency of such a theory is the assumed r independence (here z independence) 
of the meandering. While their results suggested that the periodic axial shear in 
the mean azimuthal velocity was a possible source for wavy motions, in our case 
the corresponding cross-slope shear of the upslope velocity appears t,o be too 
small, and i O  is likely that the lateral differential buoyancy force (equivalent to 
the differential Coriolis force 2Qu, in the rotating problem) is a necessary in- 
gredienC for Ohe slant convective meanders. Of course our meanders perhaps 
correspond more closely to the shorter wavelength (azimuthal wave-number 4) 
meanders observed by Coles (1965). 
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FIGURE 2. Plan view of the wavy vorticcs. Ra = 7650, 6 = 60'. 

Plate 1 

(Pacing p .  272) 
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FIGURE 3. Dye-line visualization of the onset of meandering. Pr = 6.7, h = 0.027,s = 30" 
In (a) Ra = 4510, in (b), 5160, in (c), 5780, and in (d ) ,  7570. 
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